“ESTUDIO DE MAQUINADO DE LA MADERA DE
Eucalyptus grandis Hill ex Maiden Y Eucalyptus urophylla
S. T. Blake, DE UNA PLANTACIÓN FORESTAL COMERCIAL
DE 7 AÑOS”

TESIS PROFESIONAL

Que como requisito parcial
para obtener el título de

INGENIERO FORESTAL INDUSTRIAL

P r e s e n t a

JOSÉ LUIS MEDINA HERNÁNDEZ

Chapingo, Texcoco, Edo. de México
Junio de 2003
<table>
<thead>
<tr>
<th>CONTENIDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PÁGINA</td>
</tr>
<tr>
<td>ÍNDICE DE CUADROS... iii</td>
</tr>
<tr>
<td>ÍNDICE DE FIGURAS... iv</td>
</tr>
<tr>
<td>RESUMEN... vi</td>
</tr>
<tr>
<td>SUMMARY... vii</td>
</tr>
<tr>
<td>1. INTRODUCCIÓN.. 1</td>
</tr>
<tr>
<td>2. OBJETIVOS... 4</td>
</tr>
<tr>
<td>3. REVISIÓN DE LITERATURA... 5</td>
</tr>
<tr>
<td>4. DESCRIPCIÓN DEL ÁREA DE COLECTA...................................... 14</td>
</tr>
<tr>
<td>5. DESCRIPCIÓN DE LAS ESPECIES... 16</td>
</tr>
<tr>
<td>5.1. Eucalyptus grandis Hill ex Maiden................................. 16</td>
</tr>
<tr>
<td>5.2. Eucalyptus urophylla S. T. Blake................................. 18</td>
</tr>
<tr>
<td>6. MATERIALES Y MÉTODOS... 20</td>
</tr>
<tr>
<td>6.1. OBTENCIÓN DEL MATERIAL DE ENSAYO............................... 20</td>
</tr>
<tr>
<td>6.2. DESCRIPCIÓN DEL EQUIPO... 24</td>
</tr>
<tr>
<td>6.3. METODOLOGÍA... 27</td>
</tr>
<tr>
<td>6.3.1. Cepillado... 27</td>
</tr>
<tr>
<td>6.3.2. Lijado... 28</td>
</tr>
</tbody>
</table>

| PÁGINA |
INTRODUCCIÓN

6.3.3. Barrenado... 29
6.3.4. Moldurado... 30
6.3.5. Torneado... 31

6.4. EVALUACIÓN DE LOS ENSAYOS.. 33
6.4.1. Defectos a considerar... 33
6.4.2. Evaluación de acuerdo a la presencia y severidad del defecto............. 33
6.4.3. Evaluación de acuerdo a la extensión y severidad del defecto............. 34
6.4.4. Evaluación del comportamiento de las especies ante el maquinado...... 36

7. RESULTADOS Y DISCUSIÓN.. 37
7.1. CEPILLADO... 37
7.2. LIJADO... 44
7.3. BARRENADO... 48
7.4. MOLDURADO... 52
7.5. TORNEADO... 55

8. CONCLUSIONES... 61

9. RECOMENDACIONES.. 63

10. LITERATURA CITADA.. 64

11. ANEXOS... 67
| Cuadro 1. Clasificación en base a la extensión del defecto .. 34 |
| Cuadro 2. Clasificación en base a la severidad del defecto ... 34 |
| Cuadro 3. Clasificación en base a la extensión y severidad de los defectos .. 35 |
| Cuadro 4. Clasificación de los defectos de acuerdo a Zavala (1976) ... 36 |
| Cuadro 5. Clasificación del comportamiento de la madera al maquinado ... 36 |
| Cuadro 6. Comportamiento al cepillado de la madera de *Eucalyptus grandis* según la Norma ASTM 37 |
| Cuadro 7. Comportamiento al cepillado de la madera de *Eucalyptus urophylla* según la Norma ASTM 40 |
| Cuadro 8. Comportamiento de la madera al cepillado de acuerdo a la extensión y severidad de los defectos según metodología de Zavala (1976) ... 42 |
| Cuadro 9. Comportamiento de la madera al lijado según la Norma ASTM .. 45 |
| Cuadro 10. Comportamiento de la madera al lijado de acuerdo a la extensión y severidad de los defectos según metodología de Zavala (1976) .. 46 |
| Cuadro 11. Comportamiento de la madera al barrenado según la Norma ASTM ... 48 |
| Cuadro 12. Comportamiento de la madera al barrenado de acuerdo a la extensión y severidad de los defectos según metodología de Zavala (1976) ... 50 |
| Cuadro 13. Comportamiento de la madera al moldurado según la Norma ASTM ... 52 |
INTRODUCCIÓN

Cuadro 14. Comportamiento de la madera al moldurado considerando a la extensión y severidad de los defectos según metodología de Zavala (1976)............. 54

Cuadro 15. Comportamiento de la madera al torneado según la Norma ASTM........... 56

Cuadro 16. Comportamiento de la madera al torneado de acuerdo a la extensión y severidad de los defectos según metodología de Zavala (1976)............... 57

ÍNDICE DE FIGURAS.

PÁGINA

Figura 1. Plantación de Eucalyptus grandis y E. urophylla................................. 14
Figura 2. Localización del área de colecta... 15
Figura 3. Plantación de Eucalyptus grandis... 18
Figura 4. Plantación de Eucalyptus urophylla.. 20
Figura 5. Trozas utilizadas para la obtención de las probetas............................ 21
Figura 6. Obtención del material de ensayo... 21
Figura 7. Probetas utilizadas en los ensayos... 22
Figura 8. Secado de la madera en estufa solar... 23
Figura 9. Cepillo utilizado en el ensayo... 24
Figura 10. Lijadora de banda.. 25
Figura 11. Torno utilizado en el maquinado... 25

PÁGINA
INTRODUCCIÓN

Figura 12. Taladro utilizado en el barrenado……………………………………….. 26
Figura 13. Trompo utilizado en el ensayo………………………………………… 26
Figura 14. Plantilla utilizada en el moldurado…………………………………….. 30
Figura 15. Cuchilla utilizada en el torneado……………………………………….. 32
Figura 16. Grano astillado en el cepillado………………………………………… 39
Figura 17. Comparación entre especies en el cepillado…………………………… 44
Figura 18. Comparación entre especies en el lijado………………………………… 47
Figura 19. Grano astillado en el barrenado………………………………………… 48
Figura 20. Grano apelusado en el barrenado………………………………………. 49
Figura 21. Comparación entre especies en el barrenado………………………….. 51
Figura 22. Grano apelusado en el moldurado……………………………………….. 53
Figura 23. Comparación entre especies en el moldurado………………………….. 54
Figura 24. Grano apelusado en el torneado………………………………………… 59
Figura 25. Grano astillado en el torneado…………………………………………… 59
Figura 26. Comparación entre especies en el torneado…………………………….. 60
El presente estudio da a conocer el comportamiento de la madera al maquinado de las especies de *Eucalyptus grandis* y *E. urophylla* del municipio de Las Choapas, estado de Veracruz. Los ensayos realizados fueron: cepillado (con velocidades de alimentación de 7.5 m/min y 13 m/min y ángulos de corte de 30º, 25º, 20º y 15º), lijado (con velocidad de alimentación de 14 m/min y lija fina del número 100), moldurado (con velocidad de giro del cabezal portafresas de 8000 rpm), torneado (con contenido de humedad de 14.2 % y 10.0 % en *E. grandis* y 13.8 % y 10.6 % en *E. urophylla*) y barrenado (con velocidad de giro de broca de 1300 rpm). La evaluación de los ensayos se realizó de acuerdo a lo establecido por la Norma ASTM D 1666-64, considerando la presencia y severidad de los defectos de grano astillado, grano apelusado, grano levantado, marcas de astilla, grano rasgado, grano comprimido y rayones. También se realizó ésta en base a la extensión y severidad de los defectos de acuerdo a Zavala (1976). El comportamiento al maquinado de la madera de *E. grandis* se clasifica como buena al cepillado (ángulo de corte de 30º y velocidad de alimentación de 7.5 m/min), barrenado y torneado (contenido de humedad de 14.2 % y 13.8 %), excelente al lijado y regular al moldurado. El comportamiento al maquinado de la madera de *E. urophylla* se clasifica como excelente en todos los ensayos probados.

Palabras clave: cepillado, lijado, moldurado, torneado, barrenado, eucalipto.
SUMMARY

The machining behaviour of wood was studied for *Eucalyptus grandis* and *E. urophylla* from Las Choapas country of Veracruz state. Test were carried out for planing, sanding, moulding, turning and boring. Planing test were performed at feed speeds 7.5 m/min and 13 m/min, and cutting angle 30º, 25º, 20º and 15º. A fine sandpaper, number 100, and a feed speed of 14 m/min were used for sanding tests. Moulding tests were made with a cutterhead spindle speed of 8000 rpm. Turning tests were carried out at 14.2 % and 10.0 % moisture content for *E. grandis* and at 13.8 % and 10.6 % for *E. urophylla*. Boring tests were performed with a spindle speed of drill of 1300 rpm. Tests evaluation was carried out according to the ASTM standard D 1666-64, and taken into account presence and severity of chipped grain defects, fuzzy grain, raised grain, chip marks, torned grain, compressed grain and stripes. Test evaluation was also made according to the methodology proposed by Zavala (1976) and considering the extension and severity of the defects. The machining behaviour of wood for *E. grandis* was classified as good for planing (cutting angle 30º and feed speed 7.5 m/min), boring and turning (14.2 % and 13.8 % moisture content), excellent for sanding and regular for moulding. The machining behaviour of wood for *E. urophylla* was excellent for all the machining tests.

Key words: planing, sanding, moulding, turning, boring, eucalypt.
Las características tecnológicas de la madera son determinantes para su aprovechamiento y posterior aplicación específica en usos y procesos donde ciertas propiedades son decisivas para obtener un beneficio máximo desde el punto de vista económico y técnico. Uno de los factores principales que afectan la utilización general de la madera es su comportamiento ante las máquinas y/o herramientas (Zavala, 1976).

El incremento en la demanda de productos forestales en el mundo, combinado con la presión del uso de la tierra forestal para otros propósitos nos obliga a buscar nuevas alternativas de uso de las especies maderables de rápido desarrollo; la principal razón por la que se han plantado millones de hectáreas de eucaliptos en todo el mundo se debe a su rápido crecimiento (Walker, 1993).

De las 500 especies y subespecies existentes del género Eucalyptus, en términos prácticos solamente alrededor de 10 especies han sido plantadas extensivamente fuera de Australia. En estos países forman masas naturales de espectacular belleza, que mantienen ecosistemas valiosísimos, tanto por albergar una flora y una fauna peculiares, con valores ecológicos excepcionales en diversos aspectos, como en lo que concierne a la conservación y mejora de los suelos.

El eucalipto no solo sirve para producir madera, sino también para mejorar el ambiente; se planta en diferentes partes para beneficiar a los habitantes, proporcionando sombra, controlando la erosión y mejorando la calidad del aire, ya que captura dióxido de carbono y libera oxígeno en el
proceso de fotosíntesis (Cordero, 2001). Los eucaliptos son una de las especies más productivas (en cantidad de madera), que se utilizan actualmente. Su elevada producción y su relativamente breve edad de corta en relación a otras especies alternativas son muy interesantes para el silvicultor. Por otra parte, la evidente y creciente falta de madera en el mundo obliga a la producción intensiva de esta. Sin embargo, muchos de los aspectos esenciales de su cultivo pueden resultar extraños especialmente para los que desconocen las nuevas posibilidades económicas que cada día se desarrolla en torno a este género (Montoya, 1995).

La madera de eucalipto es sólida, dura y resistente a los insectos perforadores; pero como en su mayoría las fibras son de hilo entrecruzado se emplea poco en ebanistería. Durante largo tiempo la industria de la madera y el papel han utilizado los recursos forestales naturales sin encontrar serias dificultades, pero el creciente consumo amenaza con agotar los recursos de los países tradicionalmente exportadores de madera, por lo cual es necesario recurrir a la importación de los países transoceánicos, manteniendo costos más elevados a causa de los notables gastos de transporte. De ahí la importancia que ha adquirido en los últimos años el cultivo de las especies forestales de rápido crecimiento, entre las cuales el eucalipto ocupa un lugar destacado, ofreciendo además, la particular cualidad de adaptarse a terrenos considerados difíciles o malos para otros cultivos.

El *Eucalyptus urophylla* S.T. Blake y *Eucalyptus grandis* Hill ex Maiden son dos especies poco estudiadas en relación a sus características de maquinado, generalmente son las más utilizadas en plantaciones maderables para la producción de pulpa y papel, también han tenido un buen desarrollo en un gran número de países debido a su rápido crecimiento en áreas con buena precipitación pluvial y que no presentan heladas. Sus maderas cuentan con buenas características
para la producción de material celulósico, comparándolo con otras especies de eucalipto (Cordero, 2001).

Las plantaciones forestales evitan la erosión de los suelos y ayudan al embellecimiento de los bosques. Muchas industrias ven en estos proyectos una fuente que les brinda madera de alta calidad, en un periodo de tiempo relativamente corto, especialmente las de pulpa y papel (Cordero, 2001). Es así como surge la empresa Plantaciones Operativas de México, S. A. de C. V., ubicada en el municipio de Las Choapas en el estado de Veracruz; la cual se encarga de realizar plantaciones de eucalipto en el trópico húmedo en ciclos continuos de siete años destinadas a la producción de celulosa, tableros y otros productos. Sin embargo, es necesario la realización de diferentes estudios anatómicos, físico-mecánicos y de maquinado de las diferentes especies plantadas para buscar nuevas alternativas de uso. Es por ello que el presente estudio surge del interés de la empresa propietaria de la plantación por conocer el comportamiento de la madera de estas dos especies de eucalipto ante las operaciones de maquinado.
2. OBJETIVOS

Determinar el comportamiento ante las máquinas y herramientas de la madera de *Eucalyptus urophylla* S.T. Blake y *Eucalyptus grandis* Hill ex Maiden, provenientes de la empresa Plantaciones Operativas de México, S. A. de C. V., considerando los procesos de cepillado, lijado, moldurado, torneado y barrenado; utilizando dos métodos de evaluación.

Comparar el comportamiento relativo de las especies de estudio con las especies *Pinus arizonica*, *P. cooperi* y *Fraxinus uhdei*.
Las especies del género *Eucalyptus* han presentado en los últimos años una singular trascendencia en las plantaciones forestales, ocupando un lugar preferencial en la silvicultura de los países templado-cálidos y tropicales del mundo, comprenden una gran variedad de árboles ornamentales, forestales, medicinales, etc. Esta multiplicidad de usos, así como las características tecnológicas de la madera, la velocidad de crecimiento y el desarrollo vegetativo que alcanzan, son algunos de los tantos factores que han incidido en la rápida difusión de este género.

Las diversas especies de eucaliptos suministran madera dura, semidura y blanda, cuyo empleo varía desde la fabricación de cajas de madera, parquets y muebles, hasta durmientes de ferrocarriles (Dimitri y Mangieri, 1971). Sin embargo en la República Mexicana hasta el año 2002 no se han realizado aún estudios tecnológicos y de maquinado de este género.

En lo referente a los ensayos del comportamiento de las maderas a las máquinas y herramientas se cuenta con los siguientes estudios:

Mckenzie (1960) realizó un estudio sobre los aspectos fundamentales que afectan el proceso de corte de la madera y concluyó que los factores que afectan este proceso son la velocidad de corte, la dirección del hilo, el contenido de humedad y la fricción entre la madera y el filo cortante.
Koch (1964) analizó el proceso de maquinado de la madera relacionando en el cepillado la calidad de la superficie obtenida con la especie de madera, contenido de humedad, densidad básica, dirección del grano, velocidad de corte, número de cuchillas en el cabezal, ángulo de corte, velocidad de alimentación y profundidad de corte. En el cepillado recomienda utilizar el ángulo de corte de 30° para maderas blandas y de 20° para maderas duras. En el moldurado analizó la velocidad de alimentación, velocidad de giro del cabezal, número de cuchillas en el cabezal, tipo de máquina y número de marcas de cuchilla por pulgada. En el taladrado analizó la dirección del mismo (en forma perpendicular y paralelo al grano), la formación de la astilla, diámetro de la broca, velocidad de penetración, densidad y contenido de humedad de la madera y profundidad del agujero. En el torneado relacionó la calidad de la superficie con la velocidad del eje, la longitud de la cuchilla, la forma del corte y las características de la madera; además menciona que se obtiene una mejor calidad de la superficie a un contenido de humedad de 6 % que a 12 % y 20 %. En el lijado relacionó la calidad de la superficie obtenida con el tipo de abrasivo utilizado, mencionando que la lijadora de banda produce más rayones y apelusamiento sobre la madera que una lijadora de tambor.

Mckenzie (1967) investigó la relación entre el coeficiente de fricción en el corte de la madera y sus efectos en la variable de presión, área de contacto, velocidad de deslizamiento, aspereza de la superficie de la herramienta, especie, dirección del grano y contenido de humedad. Encontró que los factores que más afectan la fricción entre la madera y el metal son los extractivos, el contenido de humedad, la aspereza del metal y la velocidad de deslizamiento.

Stewart (1970a) comparó el cepillado con cuchillas y con abrasivos para evaluar la calidad de la superficie obtenida y la fuerza requerida, la cual resultó aproximadamente 6 veces mayor en el
cepillado con abrasivos en dirección paralela al grano y de 20 a 25 % menos en dirección transversal al grano. También encontró que la calidad de la superficie fue mayor en el cepillado con cuchillas. Asimismo, al incrementar la velocidad de alimentación en el cepillado con cuchillas la calidad de la superficie disminuyó y en el cepillado con abrasivos permaneció constante.

Stewart (1970b) realizó un estudio sobre el cepillado del maple duro combinando cuatro ángulos de corte (10, 20, 30 y 45º), tres profundidades de corte (1/32, 1/16 y 1/8 ") y tres velocidades de alimentación (10, 20 y 30 marcas de cuchilla por pulgada) para obtener 36 combinaciones y así evaluar la calidad de la superficie de cepillado cuando se realiza perpendicular y paralela al grano. La mayor variabilidad de la superficie se obtuvo cuando el cepillado se realizó en forma perpendicular al grano, sin embargo la mejor calidad se obtuvo al cepillar la madera en forma paralela al grano.

Barefoot y Gilmore (1974) realizaron diversos estudios para evaluar las maderas tropicales de *Carapa guianensis*, *Zanthoxylum* sp., *Osteophloeum* sp., *Hura* sp., *Camposperma panamensis* y *Dialyanthera* sp. de Sudamérica importadas a los Estados Unidos y después compararon los resultados con *Liriodendron tulipifera* L., encontrando que en el cepillado el ángulo de corte de 15º produjo menos piezas con defectos que los ángulos de corte de 20º y 30º.

Stewart (1974) realizó una comparación de los factores que afectan la fuerza requerida del cepillado con abrasivos y con cuchillas en 4 especies de maderas duras (tilo, álamo amarillo, roble rojo y nogal americano); en ambos tipos de cepillado concluye que la fuerza requerida incrementa con la velocidad de alimentación, profundidad de corte y la densidad básica. También
REVISIÓN DE LITERATURA

menciona que el cepillado con cuchillas es más eficiente al eliminar proporciones más altas de madera y requiere menos fuerza, sin embargo, el cepillado con abrasivos es capaz de cortar a profundidades mayores de 1/4" aunque la fuerza requerida aumenta con el número de grano.

Lehmann y Stewart (1974) estudiaron el efecto sobre la calidad de la superficie de maquinado en las maderas de tilo, roble rojo y pino ponderosa al utilizar cuchillas rectas convencionales y cuchillas con forma helicoidal no encontrando diferencia significativa entre ambas operaciones, cuando se realiza en forma perpendicular al grano.

Zavala (1976) realizó un estudio de las características de maquinado de las maderas de *Alnus arguta* (aile), *Cordia dodecandra* (siricote), *Lysiloma bahamensis* (tzalam), *Manilkara zapota* (chicózapote), *Piscidia communis* (jabin) y *Pouteria campechiana* (kanisté). En base a los resultados obtenidos en los ensayos realizados y considerando como operaciones fundamentales el cepillado y lijado concluyó que el chicózapote, siricote y jabin son recomendables para cualquier trabajo de carpintería y ebanistería, mientras que el kanisté, tzalam y aile se pueden emplear en trabajos donde el cepillado y lijado no sea una limitante.

Herrera (1981) determinó las características de maquinado de 5 especies de encino que vegetan en México. Para el cepillado obtuvo mejores resultados al usar un ángulo de corte de 20° que el de 30° y en el caso del número de marcas de cuchilla por centímetro, el de 19.7 presentó mejores resultados. En general, con excepción del *Quercus candidans*, las especies presentaron buenas características de maquinado en las operaciones de cepillado, lijado, taladrado y moldurado. En el torneado las características de las especies fueron regulares.
Torrelli (1982) llevó a cabo un estudio promocional de 43 especies forestales tropicales mexicanas, en donde también realizó las operaciones de cepillado, moldurado y torneado, utilizando 5 probetas por especie. Respecto al cepillado probó tres ángulos de corte (30°, 20° y 15°) y dos velocidades de alimentación (7.6 y 13.1 m/min). En el ensayo de moldurado probó una velocidad de giro del cabezal portafresas de 6000 rpm y en el ensayo de torneado se probó una velocidad de 3500 rpm y dos contenidos de humedad (6 y 12%). Finalmente concluyó que los tres factores que más afectan la obtención de superficies lisas, además de la densidad son el grano entrecruzado, los depósitos de minerales duros y la madera de tensión. También presentó una tabla de uso final de las especies estudiadas de acuerdo a la calidad obtenida en las diferentes operaciones realizadas.

Martínez y Moreno (1984) presentaron las características de trabajabilidad de las maderas de: Cordia alliodora (Ruiz y Pav.) Cham. “Bojón”, Fraxinus uhdei (Wen) Ling. “Fresno”, Liquidambar styraciflua L. “Liquidámbar” y Roseodendron donnell-smithii (Rose) Mir. “Primavera”. Concluyeron que el bojón es una especie con buenas características de trabajabilidad, el fresno responde bastante bien a las operaciones de trabajabilidad excepto en el cepillado, el liquidámbar ofrece buenas características de trabajabilidad pero presenta dificultad en el cepillado y la madera de primavera presenta un comportamiento irregular en los diferentes ensayos. En el cepillado, no se tuvo influencia al cepillar las especies en el sentido del hilo y en contrapelo. Para el fresno y el liquidámbar el ángulo de corte de 20° dio mejores resultados que el ángulo de 30°. En bojón y primavera se obtuvieron resultados semejantes con los dos ángulos.

Polak y Stewart (1985) relacionaron la densidad básica y algunas propiedades mecánicas de 25 maderas duras mediante modelos para estimar el porcentaje de piezas libres de defectos en las
REVISIÓN DE LITERATURA

operaciones de cepillado y moldurado, los resultados demostraron que el porcentaje de piezas libres de defectos en el cepillado se incrementa al aumentar el número de marcas de cuchilla por pulgada.

Taquire (1987) presentó un estudio de las propiedades físicas y el comportamiento al maquinado de *Guazuma crinita* Mart. en el Perú. En el cepillado la especie se comportó mejor al reducir el ángulo de ataque; en el lijado el comportamiento fue muy bueno; en el taladrado se comportó bien a una mayor velocidad de giro de la broca y en el moldurado su comportamiento fue muy bueno cuando el ensayo se realizó paralelo a las fibras.

Flores (1990) determinó las características de maquinado en las operaciones de cepillado, taladrado, moldurado, torneado y lijado de cuatro especies de encino del estado de Puebla. *Quercus affinis* (encino), *Q. crassifolia* (encino hoja ancha), *Q. glabrescens* (encino roble) y *Q. mexicana* (encino). Los resultados de cepillado fueron buenos en general utilizando un ángulo de corte de 20° y 16.8 marcas de cuchilla por centímetro; en estas condiciones de operación sólo se apreciaron defectos leves, fácil de eliminar con un lijado suave. Cuando se utilizaron menores números de marcas de cuchilla y ángulos de corte mayores, los resultados fueron regulares. El defecto más frecuente fue el de grano astillado. En la prueba de torneado se obtuvieron excelentes resultados con madera al 12% de contenido de humedad (CH), excepto en encino roble que fueron regulares. A contenido de humedad menores (7%) la calidad del torneado fue de regular a muy pobre, presentándose grano astillado con mucha frecuencia. El comportamiento de las cuatro especies fue excelente en las pruebas de taladrado, moldurado y lijado, observándose la presencia leve de grano apelusado en taladrado y lijado, y de grano astillado en moldurado. En
general, las cuatro especies son apropiadas para ser utilizadas por la industria maderera en la elaboración de productos terminados de alta calidad.

Flores (1991) determinó las características de maquinado y comparó dos tipos de aleaciones de acero de las cuchillas en el cepillado en relación con el grado de desafilado y consumo de energía de tres especies maderables de encino del estado de Guanajuato (*Quercus laurina*, *Q. crassifolia* y *Q. rugosa*). En los ensayos de cepillado y torneado el defecto más frecuente fue el grano astillado. Los resultados obtenidos en el torneado fueron superiores a los regulares. Para los ensayos de moldurado, taladrado y lijado se obtuvieron excelentes resultados para las tres especies, observándose grano apelusado muy leve.

Goche (1993) realizó el estudio tecnológico de la madera de *Quercus sideroxyla* del estado de Durango; mostrando excelentes resultados en el cepillado al utilizar un ángulo de corte de 20° y 29.3 marcas de cuchilla por centímetro, con el ángulo de 30° y el mismo número de marcas de cuchilla por centímetro la calidad obtenida fue menor. En los ensayos de lijado y moldurado presentó excelentes resultados mostrando el defecto de grano apelusado en el moldurado y en el lijado no hubo defectos. Concluyó que la madera resulta apropiada para la fabricación de muebles de alta calidad y uso en interiores.

Sosa (1993) determinó las características de maquinado de la especie *Prosopis laevigata* (mezquite) del estado de Guanajuato. En este estudio, concluyó que el mezquite es una madera con características anatómicas (hilo entrecruzado, textura gruesa heterogénea y porosidad circular) aparentemente desfavorables para la obtención de excelentes resultados en las operaciones de maquinado; resultando que otras características anatómicas y propiedades físicas
y mecánicas favorables prevalecen sobre las mencionadas como porosidad, peso específico, alta densidad, dureza y rigidez dada por sus paredes celulares gruesas. Para el ensayo de cepillado en sentido y en contra del grano no se observó influencia significativa; con respecto al ángulo de corte los mejores resultados fueron con el ángulo de 20°. En los otros ensayos los resultados fueron excelentes con excepción del moldurado en donde se obtuvo una calificación buena.

Tonacatl (1995) realizó estudios tecnológicos de la madera de *Matudea trinervia* Lundell (Quebracho), del estado de Puebla. En relación a las operaciones de maquinado, los mejores resultados para la prueba de cepillado se obtuvieron utilizando 29.3 marcas de cuchilla por cm y ángulos de corte de 20°, 25° y 30°; en la prueba de lijado los resultados fueron excelentes; obteniéndose resultados regulares en las pruebas de barrenado, moldurado y torneado. Se considera factible la utilización de esta madera con buenos resultados en la elaboración de parquet, duela, lambrín y mobiliario en general, de uso preferentemente en interiores.

Martínez y Martínez-Pinilllos (1996a) determinaron las características de maquinado de 32 especies de madera en las operaciones de barrenado, escopleado y moldurado, utilizando 5 probetas por especie y comprobando que en términos generales a mayor densidad básica los resultados son mejores.

Martínez y Martínez-Pinilllos (1996b) determinaron las características de cepillado y lijado de 33 especies de madera, utilizando 5 probetas por especie. De los tres ángulos de corte probados (20, 25 y 30°) en el cepillado los mejores resultados se apreciaron con el ángulo de 30°. De igual forma de las tres graduaciones de lija (números 60, 80 y 100) los mejores resultados se obtuvieron usando la del número 100.
Peredo (1999) presentó un documento en donde se describen algunas formas de industrialización del género *Eucalyptus*, destacando los resultados correspondientes a un estudio realizado por Bioforest con el objeto de analizar la factibilidad técnica de aserrío, secado y trabajabilidad de la madera de *Eucalyptus globulus*, *E. nitens* y *E. regnans*.

Vázquez y Zavala (2001) determinaron las características de maquinado de la madera de 34 especies tropicales. Respecto al cepillado utilizaron los ángulos de corte de 30º y 20º, obteniendo los mejores resultados con el ángulo de corte de 20º en maderas de densidad media a alta y con el ángulo de corte de 30º en maderas de baja densidad. En el torneado el 50 % de las probetas se acondicionaron a un 8 % de contenido de humedad y el resto a 12 %, obteniendo que 24 especies se clasificaran como excelentes, 4 como buenas, 3 como regulares y 3 como pobres y muy pobres. En el moldurado concluyeron que 21 especies se pueden utilizar para la producción de molduras y las otras 13 especies presentaron baja calidad en este ensayo. En el taladrado 24 especies presentaron resultados excelentes, 3 buenas, 1 regular y 6 pobres y muy pobres. En el ensayo de lijado se utilizaron tres lijas de los números 60, 80 y 100, clasificándose 15 especies como excelentes, 4 como buenas, 6 fueron regulares y 9 pobres y muy pobres.
Las dos especies de eucalipto utilizadas en el presente estudio provienen de la empresa Forestaciones Operativas de México S.A. de C.V., la cual es una empresa filial de la industria Rexcel y subsidiaria del grupo Desc. La plantación (Figura 1) se encuentra ubicada en el municipio de Las Choapas, estado de Veracruz, entre las coordenadas geográficas 17° 59’ y 17° 15’ de Latitud Norte y 93° 37’ y 94° 19’ de Longitud Oeste. Representa el 5.89 % de la superficie del estado y su altitud es de 10 msnm. Colinda al norte con los municipios de Moloacán, Agua Dulce y el estado de Tabasco; al este con los estados de Tabasco y Chiapas; al sur con el estado de Chiapas y el municipio de Minatitlán; al oeste con los municipios de Minatitlán y Moloacán.

Figura 1. Plantación de *Eucalyptus grandis* y *E. urophylla*.
DESCRIPCIÓN DEL ÁREA DE COLECTA

El municipio se encuentra ubicado en la zona limítrofe del sureste del estado de Veracruz, en gran parte por la Sierra Madre Oriental, que procedente de Chiapas y Oaxaca penetra a Veracruz precisamente por este municipio, haciendo irregular su topografía (Figura 2). Sus ríos principales son el Pedregal, Tonalá y Nanchital; tiene además las lagunas de San Pedro y Tecuanapa, y los arroyos el Remolino y el Control. Su clima es cálido-regular con una temperatura promedio de 27 °C; su precipitación pluvial media anual es de 2,900 mm. Los ecosistemas que existen en el municipio son los de selva baja perennifolia y caducifolia.

Figura 2. Localización del área de colecta.
5.1. *Eucalyptus grandis* Hill ex Maiden.

Nombre vulgar: “Rose gum”, “Floded gum”, “toolur”.

Regiones nativas: Norte de Nueva Gales del Sur y sur de las áreas de la costa de Australia, con dos presencias separadas en el centro y en el norte de Queensland. La especie fue introducida en varios países durante la última década del siglo XIX y las dos primeras décadas del siglo XX.

Clima: Es una especie de clima subtropical con abundantes precipitaciones y mucha humedad, sin temperaturas extremas, con la excepción de ligeras nevadas en los fondos de los valles. Prefiere suelos de origen limoso con cierto grado de humedad y fertilidad siempre que no se encuentran sumergidos.

Latitudes: De 16° a 35° Sur. Altitud de 0 a 900 msnm. Con lluvias de verano, de 1000 a 1800 mm anuales y con una estación seca de 3 meses, raramente rigurosa y temperatura media máxima del mes más cálido de 29 a 32 ºC y media mínima del mes más frío de 5 a 6 ºC. No soporta las heladas ni temperaturas inferiores a 0 ºC.

Características generales: Es un árbol con una altura en Australia de 40 a 65 m y de 1.20 a 1.80 m de diámetro; por lo general con un tronco excelente y una copa abierta bastante rala. Su
DESCRIPCIÓN DE LAS ESPECIES

La madera es rosada a pardo rojiza clara, con grano derecho, manejable, con textura gruesa, moderadamente durable.

La densidad básica de la madera de *Eucalyptus grandis* obtenida en plantaciones varía generalmente entre 0.40 a 0.55 g/cm³, con tendencia a que, tanto la densidad básica como el largo de la fibra, aumenten con la distancia desde la médula. En este caso la densidad calculada de la especie estudiada es de 0.48 g/cm³. Es uno de los más importantes eucaliptos exóticos, tanto por la amplitud de sus plantaciones como por su excelente comportamiento.

Usos: La madera del *Eucalyptus grandis* es más ligera, más suave y se raja más que la de la mayoría de los eucaliptos. Se emplea ampliamente en Australia en la construcción de viviendas cuando la madera se corta de los árboles maduros. Los árboles inmaduros se asierran para cajas de madera para fruta. La madera tiene la tendencia a curverse en el secado, especialmente cuando está aserrada de árboles de rápido crecimiento, pero tiene posibilidades para elaboración de chapas. Se encuentra ya ampliamente en plantaciones que se extienden rápidamente.

El *Eucalyptus grandis* se ha empleado para una gran cantidad de propósitos, entre ellos para producir pasta al sulfato. En Brasil se utilizan también grandes cantidades para carbón en fundiciones de hierro, ha sido muy empleado para leña, tanto para usos domésticos como para el curado del tabaco. Además, se ha empleado para postes de cercas, construcción, postes eléctricos y telefónicos, ademes para minas, paneles, etc. Puede también ser usado para el aserrío, pero tiene una fuerte tendencia a rajarse. Se utiliza en muchos países para cortinas de abrigo, rompevientos y plantaciones para esparcimiento (Cordero, 2001).

** Inédito, López y Martínez.*
La madera utilizada en este estudio proviene de árboles de 30 cm de diámetro y 25 m de altura en promedio. En la Figura 3 se muestra la plantación de donde se seleccionaron los árboles utilizados en este estudio.

Figura 3. Plantación de Eucalyptus grandis.

5.2. *Eucalyptus urophylla* S.T. Blake.

Regiones nativas: No es una especie australiana, su origen se encuentra en Timor y otras islas de la parte oriental del archipiélago de Indonesia. La textura de suelo que tolera es de ligero a pesado, con un pH neutro a ácido y con drenaje libre. Su semilla fue por primera vez recogida e introducida en Java por botánicos holandeses en 1890. La especie fue introducida en Australia (Nueva Gales del Sur) en 1966.
Descripción de las especies

Latitudes: De 6° a 17° Sur. Altitud desde 300 hasta 3000 msnm. Con lluvias de verano, de 1000 a 2000 mm anuales, con estación seca no rigurosa y temperatura media máxima del mes más cálido de 29 °C y media mínima del mes más frío de 8 a 12 °C y sin presencia de heladas, excepto en elevaciones más altas.

Características generales: El árbol alcanza una altura en Timor de 15 a 50 m y un diámetro a la altura del pecho de 60 a 80 cm. Su madera es rojiza, fuerte y durable. La albura es de color rojizo-marrón claro y el duramen es más oscuro.

La densidad básica de la madera proveniente de los bosques naturales es de aproximadamente 0.9 a 1.0 g/cm³, mientras que la madera de plantaciones brasileñas es claramente más liviana, variando su densidad básica entre 0.44 y 0.63 g/cm³. En este caso la densidad básica resultó de 0.52 g/cm³*.

Usos: Ampliamente empleada en la construcción pesada y puentes en Timor. También se utiliza principalmente en la industria de pulpa y papel, pero cada vez adquiere mayor importancia como productor de leña y de materia prima para carbón vegetal. La durabilidad natural de la madera puede ser de baja a muy alta, dependiendo de la procedencia y las condiciones medioambientales. Es uno de los mejores eucaliptos de baja latitud.

La madera utilizada en este estudio proviene de árboles de diámetros de 30 cm y alturas de 25 m en promedio. En la Figura 4 se muestra la plantación de donde se seleccionaron los árboles para este estudio.

* Inédito, López y Martínez.
6. MATERIALES Y MÉTODOS

6.1. OBTENCIÓN DEL MATERIAL DE ENSAYO.

En el área de colecta citada se procedió a elegir 4 árboles de 7 años de edad para cada especie con características representativas de la masa arbórea, rectos y sanos. El material de colecta consistió en trozas de 1.50 m a partir del tocón de 30 cm hasta la altura de fuste limpio (Figura 5). A todo el material se le marcó el lado Norte mediante un corte ligero con motosierra. Todas las trozas se sellaron en sus extremos con sellador para madera.
Las trozas se trasladaron a las instalaciones de la Planta Piloto de Aserrío de la Universidad Autónoma Chapingo, en donde se obtuvieron las probetas (Figura 6) de acuerdo a las dimensiones especificadas por la Norma ASTM D 1666-64 (reaprobada en 1987).

Es conveniente mencionar que la trocería de estas especies externamente no tenía defectos, sin embargo, al momento de obtener las tablas se presentaron nudos y rajaduras. El número de probetas que determina la Norma mencionada no se pudo cumplir para los ensayos de cepillado,
lijado, moldurado y taladrado, debido a que al momento de la elaboración de las probetas se trató de obtenerlas lo más libre posible de defectos como lo determina la Norma. En cada operación se especifica el número de probetas utilizadas (Figura 7).

De acuerdo a la Norma mencionada se obtuvieron las probetas con las siguientes dimensiones, para cada ensayo:

a) **Cepillado y lijado:** 2 cm x 10 cm x 90 cm (3/4” x 4” x 36”).

b) **Barrenado y moldurado:** 2 cm x 7.5 cm x 30 cm (3/4” x 3” x 12”).

c) **Torneado:** 2 cm x 2 cm x 12.5 cm (3/4” x 3/4” x 5”).

Posteriormente las probetas se trasladaron a la Planta Piloto de Trabajabilidad de la Madera del Campo Experimental “San Martinito” del CIRCE-INIFAP en San Martinito, Tlahuapan, Puebla para llevar a cabo los diferentes ensayos.
Las probetas se acondicionaron en la estufa solar del Campo Experimental (Figura 8) determinando el contenido de humedad mediante el método de pesadas de acuerdo a la siguiente fórmula:

\[
\% CH = \frac{Ph - Po}{Po} \times 100
\]

donde:

CH: Contenido de humedad, en porcentaje.

Ph: Peso de la pieza al realizar la operación.

Po: Peso anhidro.

Figura 8. Secado de la madera en estufa solar.

Para el ensayo de torneado se acondicionaron 50 probetas de cada especie con el contenido de humedad en equilibrio con el medio ambiente. Después de realizar las operaciones se verificó el contenido de humedad, el cual se especifica en cada operación.
6.2. DESCRIPCIÓN DEL EQUIPO.

La maquinaria utilizada es la que se encuentra en la Planta Piloto de Trabajabilidad en el Campo Experimental de “San Martinito” y sus características se mencionan a continuación:

a) Cepillo marca SCM (Figura 9), modelo 2200-FBS, mesa 79.5 x 51.5 cm, velocidad de alimentación 7.5 y 13 m/min, diámetro del cabezal portacuchillas 11.8 cm, longitud del cabezal 50 cm, número de cuchillas utilizadas 4, velocidad de giro del cabezal 5,500 rpm y dimensiones de cuchillas de 0.3 x 3.5 x 50 cm. Motor de 9 HP marca ES (elettromeccanica sammarinese).

![Figura 9. Cepillo utilizado en el ensayo.](image)

b) Lijadora marca INVICTA (Figura 10), modelo Astral, mesa de 4.10 x 1.65 m, velocidad lineal de banda 1152 m/min, potencia del motor 5 HP y 2 lijas de los números 80 y 100 de granate.
MATERIALES Y MÉTODOS

c) Torno copiador semiautomático marca GENNARI ARMANDO (Figura 11), modelo LM-115, velocidad de giro del cabezal 3,200 rpm y una cuchilla especificada por la Norma en acero rápido. Motor de marca ASEA de 5 HP.
d) Taladro marca KARPINTER (Figura 12), con una velocidad de giro del cabezal de 1,300 rpm, potencia del motor 3/4 HP y un diámetro de broca de 2.54 cm (1”).

![Figura 12. Taladro utilizado en el barrenado.](image1.jpg)

e) Trompo marca INVICTA (Figura 13), modelo Velox, de mesa 100 x 90 cm, con velocidad de giro del cabezal de 4,000, 6,000, 8,000 y 10,000 rpm, con una fresa especificada por la Norma con aspas de carburo de tungsteno.

![Figura 13. Trompo utilizado en el ensayo.](image2.jpg)
6.3. METODOLOGÍA.

6.3.1. Cepillado.

Es la operación realizada después del aserrío que se lleva a cabo sobre la superficie de la madera mediante un corte periférico. Tiene como finalidad darle el espesor deseado y obtener una o ambas superficies lisas de una tabla.

Como el cepilllo utilizado tiene 4 ranuras para las cuchillas de 30° que es el predominante en los cepillos comerciales, para obtener los otros tres tipos de ángulos fue necesario realizar un bisel en la parte posterior de las cuchillas. El ensayo se realizó utilizando 4 cuchillas con un ángulo de corte de 30°, 25°, 20° y 15°, así como dos velocidades de alimentación de 7.5 m/min y 13 m/min, para obtener un número de marcas de cuchilla por centímetro de 29.33 y 16.92, respectivamente, mediante la siguiente fórmula:

\[
Nm = \frac{Vc * Nc}{Va * 100}
\]

donde:

Nm: Número de marcas de cuchillas por centímetro.
Vc: Velocidad del cabezal portacuchillas (rpm).
Nc: Número de cuchillas en el cabezal.
Va: velocidad de alimentación (m/min).

La Norma ASTM D 1666-64 (reaprobada en 1987) indica utilizar 50 probetas para este ensayo, sin embargo debido a que al momento de la elaboración de las probetas se trató de obtenerlas lo más libre posible de defectos como lo determina la Norma, la operación se realizó con 10...
probetas de la especie *Eucalyptus urophylla* y 16 para el caso de *Eucalyptus grandis*. El contenido de humedad para el *Eucalyptus urophylla* fue de 12.85 % y en el *Eucalyptus grandis* fue de 12.47 %, los cuales son diferentes a lo establecido por la Norma mencionada de 6 %, la cual indica también que en caso de utilizar algún otro contenido de humedad se especifique. La alimentación de las probetas se realizó buscando la dirección del grano y marcándolas al salir de la máquina para controlar la cara cepillada y la dirección del cepillado.

6.3.2. Lijado.

Esta operación se realiza con la finalidad de obtener superficies lisas removiendo marcas de cuchillas y otros defectos de labrado, preparando la superficie para darle mejores acabados. También el lijado se efectúa para reducir el espesor de la madera a dimensiones deseadas (Zavala, 1976).

Para realizar esta operación se utiliza la lija, la cual está formada por un material duro y abrasivo pegado a un soporte de papel o de tela. Las lijas se clasifican por el número de hilos por pulgada que se usa en el tamizado del abrasivo. Los factores que afectan la calidad del lijado son: tamaño del grano de la lija, presión ejercida de la banda lijadora, velocidad de alimentación y dirección de alimentación respecto a la madera.

Para este ensayo se utilizó una lijadora de banda, en vez de una de tambor de dos cabezas como lo especifica la Norma. Las lijas usadas fueron de los números 80 y 100 de gránate en lugar de óxido de aluminio.
En cuanto al contenido de humedad, también se modificó lo establecido por la Norma, la cual indica que este ensayo debe realizarse a 6 % o especificar en caso de utilizar otro. El CH del *Eucalyptus urophylla* fue de 12.85 % y para el *Eucalyptus grandis* de 12.47 %, ya que esta operación se llevó a cabo una vez que se terminó de realizar el cepillado. El número de probetas fue de 10 y 16 para cada especie, respectivamente. El peso del cojin opresor fue de 4.573 kg y la velocidad de alimentación promedio de 14.96 m/min y 13.01 m/min en el *E. grandis* y *E. urophylla*, respectivamente.

6.3.3. Barrenado.

Esta operación consiste en hacer una o varias perforaciones a la pieza de madera con una o varias brocas colocadas vertical u horizontalmente, desplazando la madera hacia la broca o viceversa. El tamaño de las astillas tiene considerable importancia y varía con el tipo de madera, tamaño de la perforación, tipo de broca, velocidad de giro y velocidad de avance. La velocidad de giro del cabezal utilizada fue de 1300 rpm en vez de 3600 rpm como recomienda la Norma. Se usó esta velocidad que es la recomendada por el fabricante de taladros para brocas con un diámetro de una pulgada para barrenar madera.

De igual forma el contenido de humedad recomendada por la Norma es de 6 % o especificar si se utiliza otro, en este caso se utilizó un CH de 12.79 % para el *Eucalyptus urophylla* y para el *Eucalyptus grandis* fue de 12.65 %. El número de probetas fue de 27 y 46, respectivamente. El tiempo promedio de penetración de la broca fue de 14.38 y 14.13 segundos respectivamente para ambas especies.
MATERIALES Y MÉTODOS

6.3.4. Moldurado.

Consiste en darle a la tabla un perfil determinado y especial en una de sus orillas con el fin de mejorar su calidad, por lo que su tersura de corte y detalle de la figura es de mucha importancia. Esta operación se lleva a cabo en trompos diseñados para hacer contornos con forma determinada en el borde de las piezas de madera, de acuerdo al tipo de fresa. El trompo más común es el de ejes verticales, en los cuales se montan las piezas cortantes y son generalmente de alimentación manual aunque se les puede adaptar un dispositivo para hacerlos de alimentación automática.

Para llevar a cabo esta operación se utilizó una plantilla para sujetar la pieza de madera y de esta forma realizar la operación con mayor facilidad (Figura 14).

![Figura 14. Plantilla utilizada en el moldurado.](image)

En este caso la máquina utilizada fue un trompo y la fresa con las especificaciones dadas por la Norma, con aspas de carburo de tungsteno y un diámetro de 15 cm. La velocidad de giro del cabezal portafresas fue de 8,000 rpm. De acuerdo con estas variables se obtuvo una velocidad
periférica de 62.83 m/seg, que se encuentra dentro del rango para maderas suaves que es de 60-90 m/seg para fresas con aspas de carburo de tungsteno, utilizando la siguiente fórmula:

\[V_p = \frac{D \times \pi \times V_r}{60} \]

donde:

Vp: Velocidad periférica (m/seg).
D: Diámetro de la fresa (m).
\(\pi\) = 3.1416
Vr: Velocidad de rotación del cabezal portafresas (rpm).

Como este ensayo se realizó después del barrenado el contenido de humedad de ambas especies fue el mismo en las dos operaciones. Sin embargo, el número de probetas para la especie Eucalyptus urophylla fue de 17 y para el Eucalyptus grandis se utilizaron 29, ya que algunas probetas no se ajustaron a las dimensiones para realizar el moldurado de acuerdo a la plantilla recomendada.

6.3.5. Torneado.

Consiste en darle forma específica a una pieza de madera haciéndola girar en un torno contra una cuchilla, la cual corta en diferentes posiciones las fibras de la madera (Figura 15). La penetración es en sentido helicoidal y continuo cuando la madera gira y las herramientas cortantes avanzan en dirección paralela al eje de rotación.
Este ensayo se realiza según la Norma con dos CH (6% y 12%) y una velocidad de rotación del cabezal de 3200 rpm. Sin embargo en este caso se realizó la operación a 13.85 % y 10.63 % de CH para el *Eucalyptus urophylla* y a 14.24 % y 10.05 % para *Eucalyptus grandis*. De acuerdo a la velocidad de rotación del cabezal se calculó el tiempo de torneado, por lo que éste se llevó a cabo en 10.74 y 10.80 segundos en *Eucalyptus urophylla* y en 10.47 y 10.83 segundos para *Eucalyptus grandis* para cada contenido de humedad, respectivamente. El número de probetas fue de 50 para cada especie y cada contenido de humedad.
6.4. EVALUACIÓN DE LOS ENSAYOS.

6.4.1. Defectos a considerar.

La evaluación de los ensayos se realizó de acuerdo a lo establecido por la Norma ASTM D 1666-64 (reaprobada en 1987), en la cual se consideran los siguientes defectos: grano astillado, grano apelusado, grano levantado, marcas de astilla, grano rasgado, grano comprimido y rayones; presentados en el anexo 1.

6.4.2. Evaluación de acuerdo a la presencia y severidad del defecto.

La evaluación de las probetas se realizó como lo establece la Norma mencionada, en base a la presencia y severidad de los defectos antes señalados, visualizando la probeta con luz natural y clasificándolos de la siguiente manera:

GRADO 1: **Excelente**: Libre de defectos.

GRADO 2: **Buena**: Con defectos superficiales que pueden eliminarse con una lija fina del No. 100.

GRADO 3: **Regular**: Con defectos marcados que pueden eliminarse al utilizar una lija gruesa del No. 60 y después una fina del No. 100.

GRADO 4: **Pobre**: Con defectos severos que para eliminarlos se requiere trabajar nuevamente la pieza de madera.

GRADO 5: **Muy pobre**: Con defectos muy severos que para eliminarlos se requiere sanear la pieza de madera trabajada.
6.4.3. Evaluación de acuerdo a la extensión y severidad del defecto.

La evaluación de las probetas, también se llevó a cabo de acuerdo al procedimiento utilizado por Zavala (1976). En este tipo de evaluación se tomó en cuenta la ausencia o presencia de defectos, y en este último caso se evaluó la extensión de los defectos otorgándole un grado en base a la superficie total de la probeta (Cuadro 1).

Cuadro 1. Clasificación en base a la extensión del defecto.

<table>
<thead>
<tr>
<th>GRADO</th>
<th>EXTENSIÓN DEL DEFECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1/5</td>
</tr>
<tr>
<td>3</td>
<td>2/5</td>
</tr>
<tr>
<td>4</td>
<td>3/5</td>
</tr>
<tr>
<td>5</td>
<td>≥ 4/5</td>
</tr>
</tbody>
</table>

De igual forma se relacionó el tipo de defecto y su severidad con el grado (Cuadro 2).

Cuadro 2. Clasificación en base a la severidad del defecto.

<table>
<thead>
<tr>
<th>GRADO</th>
<th>TIPO DE DEFECTO Y SEVERIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Libre de defectos</td>
</tr>
<tr>
<td>2</td>
<td>A y/o B muy superficiales</td>
</tr>
<tr>
<td>3</td>
<td>A y/o B y/o C y/o D no muy marcados</td>
</tr>
<tr>
<td>4</td>
<td>A y/o B predominando C y/o D</td>
</tr>
<tr>
<td>5</td>
<td>A y/o B, C y/o D donde C y/o D muy acentuados</td>
</tr>
</tbody>
</table>
MATERIALES Y MÉTODOS

donde:

A: Grano apelusado.
B: Grano levantado.
C: Marcas de astilla.
D: Grano astillado.

Estos defectos son considerados en el caso del ensayo de cepillado y para los demás ensayos se tomaron en cuenta los defectos presentados en cada una de las operaciones.

De acuerdo a la combinación resultante de la extensión y severidad de los defectos se obtuvo una serie de combinaciones agrupándose en diferentes rangos (Cuadro 3).

Cuadro 3. Clasificación en base a la extensión y severidad de los defectos.

<table>
<thead>
<tr>
<th>EXTENSIÓN</th>
<th>SEVERIDAD</th>
<th>COMBINACIÓN</th>
<th>RANGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1-1</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2-2</td>
<td>II</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3-3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4-4</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-3</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-5</td>
<td>V</td>
</tr>
</tbody>
</table>
Una vez obtenidas las combinaciones, Zavala (1976) clasificó los rangos de los valores en defectos severos, defectos ligeros y probetas sin defectos (Cuadro 4).

<table>
<thead>
<tr>
<th>VALORES</th>
<th>RANGO</th>
<th>CLASIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.5</td>
<td>I</td>
<td>SIN DEFECTOS</td>
</tr>
<tr>
<td>1.5 a 2.5</td>
<td>II</td>
<td>CON DEFECTOS</td>
</tr>
<tr>
<td>2.6 a 3.5</td>
<td>III</td>
<td>LIGEROS</td>
</tr>
<tr>
<td>3.6 a 4.5</td>
<td>IV</td>
<td>CON DEFECTOS</td>
</tr>
<tr>
<td>> 4.6</td>
<td>V</td>
<td>SEVEROS</td>
</tr>
</tbody>
</table>

6.4.4. Evaluación del comportamiento de las especies ante el maquinado.

La clasificación de las especies se realizó como lo indica la Norma mencionada, considerando la suma de los porcentajes de las probetas excelentes y buenas (Cuadro 5). Sin embargo en el ensayo de torneado se tomaron en cuenta la suma de los porcentajes de piezas excelentes, buenas y regulares.

<table>
<thead>
<tr>
<th>% PROBETAS EXCELENTES + BUENAS</th>
<th>CLASIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>EXCELENTE</td>
</tr>
<tr>
<td>80-89</td>
<td>BUENA</td>
</tr>
<tr>
<td>60-79</td>
<td>REGULAR</td>
</tr>
<tr>
<td>40-59</td>
<td>POBRE</td>
</tr>
<tr>
<td>0-39</td>
<td>MUY POBRE</td>
</tr>
</tbody>
</table>

En la evaluación considerada por Zavala (1976) se tomaron en cuenta la suma de los porcentajes de las probetas de los rangos I y II observados en el Cuadro 4 para todos los ensayos.
7. RESULTADOS Y DISCUSIÓN

7.1. CEPILLADO.

En el caso de la especie de *Eucalyptus grandis* se obtuvieron los siguientes resultados de acuerdo a cada variable presentada. Tomando en cuenta el ángulo de corte y la velocidad de alimentación, la clasificación más alta se obtuvo al utilizar un ángulo de corte de 30° y una velocidad de alimentación de 7.5 m/min para 29.33 marcas de cuchilla por centímetro, con una calificación de buena y la más baja fue al utilizar los ángulos de 20° y 15°, ambas con la velocidad de 13 m/min, con una calificación de muy pobre. También se puede observar que las calificaciones más bajas, comparando las dos velocidades de alimentación probadas, se obtuvieron al usar una velocidad mayor, en este caso de 13 m/min, con calificaciones de pobre y muy pobre. En cambio con la velocidad de alimentación de 7.5 m/min las calificaciones obtenidas fueron de buena y regular (Cuadro 6).

Cuadro 6. Comportamiento al cepillado de la madera de *Eucalyptus grandis* según la Norma ASTM.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>C. H. (%)</th>
<th>A. C.</th>
<th>V. A.</th>
<th>M. C.</th>
<th>% E + B</th>
<th>GRADO</th>
<th>CLASIFICACIÓN</th>
<th>D. M. F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus grandis</td>
<td>12.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>7.5</td>
<td>29.33</td>
<td>87</td>
<td>2</td>
<td>BUENA</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.0</td>
<td>16.92</td>
<td>50</td>
<td>4</td>
<td>POBRE</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°</td>
<td>7.5</td>
<td>29.33</td>
<td>62</td>
<td>3</td>
<td>REGULAR</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.0</td>
<td>16.92</td>
<td>44</td>
<td>4</td>
<td>POBRE</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20°</td>
<td>7.5</td>
<td>29.33</td>
<td>69</td>
<td>3</td>
<td>REGULAR</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.0</td>
<td>16.92</td>
<td>37</td>
<td>5</td>
<td>MUY POBRE</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15°</td>
<td>7.5</td>
<td>29.33</td>
<td>62</td>
<td>3</td>
<td>REGULAR</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.0</td>
<td>16.92</td>
<td>37</td>
<td>5</td>
<td>MUY POBRE</td>
<td>G. AST.</td>
</tr>
</tbody>
</table>
RESULTADOS Y DISCUSIÓN

C.H.: Contenido de humedad.
A.C.: Ángulo de corte (grados).
V. A.: Velocidad de alimentación (m/min).
M. C.: Número de marcas de cuchilla por centímetro.
% E + B: Porcentaje de probetas excelentes más buenas.
CLASIF.: Clasificación.
D. M. F.: Defecto más frecuente.
G. AST.: Grano astillado.

Al utilizar estas dos velocidades de alimentación con las mismas variables (número de cuchillas y velocidad del cabezal portacuchillas) se obtuvieron dos números de marcas de cuchillas por centímetro, los cuales fueron para la velocidad más baja de 29.33 y para la velocidad más alta de 16.92. Considerando estas marcas de cuchilla, se coincide con lo expresado por Flores (1990), el cual manifiesta que al utilizar un mayor número de marcas de cuchilla por centímetro se obtiene una mejor calidad en la operación de cepillado, ya que es menor la cantidad de madera que tiene que remover cada cuchilla al cortar.

El defecto más frecuente que se encontró fue el grano astillado presentándose en todos los ángulos y velocidades analizados (Figura 16). Esto puede deberse a que la madera presenta desviación del hilo y que pese a tratar de evitar los defectos no en todas las probetas se logró, ya que en algunas de ellas se tuvieron presencia de nudos, en los cuales al realizar el cepillado se acentuó aún más este tipo de defecto.

![Grano astillado en el cepillado.](image)

Para el *Eucalyptus urophylla* la calificación más alta (excelente) se obtuvo al utilizar un ángulo de corte de 30° y una velocidad de alimentación de 7.5 m/min para 29.33 marcas de cuchilla por centímetro, sin embargo también se obtuvo la misma calificación al utilizar el ángulo de 15° y la velocidad de 7.5 m/min. Por otra parte la calificación más baja (muy pobre) fue al usar un ángulo de 25° y una velocidad de alimentación de 13 m/min. Los resultados también demuestran que al utilizar una velocidad de alimentación de 7.5 m/min, se obtuvo mejor calidad variando de regular
RESULTADOS Y DISCUSIÓN

a buena y excelente. En cambio para la velocidad de alimentación de 13 m/min la clasificación varió de regular a pobre y muy pobre (Cuadro 7).

Cuadro 7. Comportamiento al cepillado de la madera de *Eucalyptus urophylla* según la Norma ASTM.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>C. H. (%)</th>
<th>A. C.</th>
<th>V. A.</th>
<th>M. C.</th>
<th>% E + B</th>
<th>GRADO</th>
<th>CLASIFICACIÓN</th>
<th>D. M. F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus urophylla</td>
<td>12.85</td>
<td>30°</td>
<td>7.5</td>
<td>29.33</td>
<td>90</td>
<td>1</td>
<td>EXCELENTE</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.0</td>
<td></td>
<td>16.92</td>
<td>40</td>
<td>4</td>
<td>POBRE</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°</td>
<td>7.5</td>
<td>29.33</td>
<td>60</td>
<td>3</td>
<td>REGULAR</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.0</td>
<td></td>
<td>16.92</td>
<td>20</td>
<td>5</td>
<td>MUY POBRE</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20°</td>
<td>7.5</td>
<td>29.33</td>
<td>80</td>
<td>2</td>
<td>BUENA</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.0</td>
<td></td>
<td>16.92</td>
<td>70</td>
<td>3</td>
<td>REGULAR</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15°</td>
<td>7.5</td>
<td>29.33</td>
<td>90</td>
<td>1</td>
<td>EXCELENTE</td>
<td>G. AST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.0</td>
<td></td>
<td>16.92</td>
<td>60</td>
<td>3</td>
<td>REGULAR</td>
<td>G. AST.</td>
</tr>
</tbody>
</table>

Al considerar el número de marcas de cuchillas por centímetro, los resultados son similares a los expresados por Flores (1990) para los encinos al utilizar un mayor número de marcas de cuchilla por centímetro se obtiene una mejor calidad en la superficie cepillada debido a que es menor la cantidad de madera que tiene que remover cada cuchilla al cortar.

RESULTADOS Y DISCUSIÓN

En las probetas de esta especie también se manifestó como el defecto más frecuente el grano astillado, en todos los ángulos y velocidades de alimentación analizados, ya que algunas presentaron varios nudos en la superficie de la misma, ocasionando la presencia de dicho defecto que se presentó en mayor cantidad al final de las probetas como efecto de la falta de apoyo en las fibras de la orilla de las tablas.

De acuerdo a la evaluación dada por Zavala (1976) la madera de *Eucalyptus grandis* resultó buena para cepillarse con los ángulos de corte de 30° y 25° y una velocidad de alimentación de 7.5 m/min. Respecto al ángulo de corte de 20° y una velocidad de alimentación de 13 m/min la madera se clasificó como muy pobre ante la operación de cepillado, debido a que el mayor porcentaje de probetas (75%) se agrupó dentro del rango III presentado en el Cuadro 4.

En el caso de la madera de *Eucalyptus urophylla* los resultados de esta clasificación muestran que esta madera se califica como excelente para el cepillado al usar los ángulos de corte de 30° y 15° con una velocidad de alimentación de 7.5 m/min. En cambio al utilizar el ángulo de 25° y una velocidad de alimentación de 13 m/min la madera presentó una calificación de 5, es decir muy pobre ante el ensayo de cepillado (Cuadro 8).
RESULTADOS Y DISCUSIÓN

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>C. H. (%)</th>
<th>A. C.</th>
<th>V. A.</th>
<th>M. C.</th>
<th>% E + B</th>
<th>GRADO</th>
<th>CLASIF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus grandis</td>
<td>12.47</td>
<td>7.5</td>
<td>29.33</td>
<td>87</td>
<td>2</td>
<td>BUENA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>16.92</td>
<td>56</td>
<td>4</td>
<td>POBRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25°</td>
<td>7.5</td>
<td>29.33</td>
<td>87</td>
<td>2</td>
<td>BUENA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>16.92</td>
<td>50</td>
<td>4</td>
<td>POBRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>7.5</td>
<td>29.33</td>
<td>56</td>
<td>4</td>
<td>POBRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>16.92</td>
<td>0</td>
<td>5</td>
<td>MUY POBRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>7.5</td>
<td>29.33</td>
<td>69</td>
<td>3</td>
<td>REGULAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>16.92</td>
<td>56</td>
<td>4</td>
<td>POBRE</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus urophylla</td>
<td>12.85</td>
<td>7.5</td>
<td>29.33</td>
<td>90</td>
<td>1</td>
<td>EXCELENTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>16.92</td>
<td>50</td>
<td>4</td>
<td>POBRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25°</td>
<td>7.5</td>
<td>29.33</td>
<td>60</td>
<td>3</td>
<td>REGULAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>16.92</td>
<td>30</td>
<td>5</td>
<td>MUY POBRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>7.5</td>
<td>29.33</td>
<td>70</td>
<td>3</td>
<td>REGULAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>16.92</td>
<td>50</td>
<td>4</td>
<td>POBRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>7.5</td>
<td>29.33</td>
<td>90</td>
<td>1</td>
<td>EXCELENTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>16.92</td>
<td>60</td>
<td>3</td>
<td>REGULAR</td>
<td></td>
</tr>
</tbody>
</table>

En general, los resultados obtenidos de excelente y bueno de acuerdo a la Norma ASTM D 1666-64 coinciden con los obtenidos mediante el sistema de evaluación de Zavala (1976), debido a que en los grados 1 y 2 de la mencionada Norma se consideran las probetas sin defectos o con defectos muy superficiales lo cual es similar a las combinaciones obtenidas de la extensión y severidad de los defectos considerados en la evaluación del mencionado autor. Es decir, para obtener las probetas en los rangos I y II del Cuadro 4 se debe tener de 0 a 2/5 de extensión de
RESULTADOS Y DISCUSIÓN

defectos, pero éstos deben ser no muy marcados, superficiales o sin defectos, como se observa en el Cuadro 3.

Sin embargo, cuando la extensión del defecto es mayor a 2/5 o la severidad es más acentuada las evaluaciones no coinciden. Esto se debe a que algunas probetas presentan defectos severos considerados de acuerdo a la Norma en los grados 3, 4 y 5 pero ocupan una extensión muy pequeña, por lo cual de acuerdo a la clasificación de Zavala (1976) la combinación resultante entre severidad y extensión si se considera en la suma de los porcentajes para clasificar la madera ante esta operación. De igual forma cuando se presentaron defectos superficiales considerados en la Norma mencionada pero con una extensión mayor de 2/5 de la probeta, la combinación resultante fue del rango III presentado en el Cuadro 4, con lo cual se obtuvo una menor clasificación que la de la Norma.

Para evaluar a las especies en sus posibles usos se realizaron gráficas comparativas con las especies *Pinus arizonica*, *P. cooperi*, y *Fraxinus uhdei*, las cuales son especies de referencia reconocidas por sus buenas características de maquinado, además de presentar densidades similares a las especies en estudio (Figura 17).
El ángulo de corte utilizado en las especies de referencia fue de 30° y la velocidad de alimentación de 7.5 m/min con 29.33 marcas de cuchilla por centímetro y en el fresno no se menciona la velocidad de alimentación usada.

Por lo que puede observarse las especies de eucalipto son comparables en el cepillado con las especies de referencia, ya que incluso presentan una clasificación mayor que las demás maderas con las mismas variables utilizadas (excepto en el *P. cooperi*).

7.2. LIJADO.

En ambas especies la madera se clasifica como excelente ante esta operación. En la lijadora se calculó la velocidad de alimentación, resultando de 14.96 m/min de acuerdo al tiempo promedio de lijado de 3.61 segundos en la especie *Eucalyptus grandis* y de 13.01 m/min con un tiempo de lijado de 4.15 segundos en promedio en la especie *Eucalyptus urophylla* y el peso del cojin
RESULTADOS Y DISCUSIÓN

opresor fue de 4.573 Kg, manteniéndose lo más constante posible la velocidad de alimentación (Cuadro 9).

Cuadro 9. Comportamiento de la madera al lijado según la Norma ASTM.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>V. L.</th>
<th>C. H. (%)</th>
<th>% E + B</th>
<th>GRADO</th>
<th>CLASIFICACIÓN</th>
<th>D. M. F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus grandis</td>
<td>14.96</td>
<td>12.47</td>
<td>100</td>
<td>1</td>
<td>EXCELENTE</td>
<td>G. APEL.</td>
</tr>
<tr>
<td>Eucalyptus urophylla</td>
<td>13.01</td>
<td>12.85</td>
<td>100</td>
<td>1</td>
<td>EXCELENTE</td>
<td>G. APEL.</td>
</tr>
</tbody>
</table>

V. L.: Velocidad de lijado (m/min).
C. H.: Contenido de humedad.
% E + B: Porcentaje de piezas excelentes más buenas.
D. M. F.: Defecto más frecuente.
G. APEL.: Grano apelusado.

En la madera del *Eucalyptus grandis* sólo una probeta presentó el grado 2 y 15 probetas presentaron el defecto de grano apelusado pero en forma muy superficial. En la madera de la especie de *Eucalyptus urophylla* el 50 % de las probetas no tuvieron defectos y el otro 50 % presentaron en su superficie grano apelusado pero en forma muy superficial, dando una clasificación de 2.

Los excelentes resultados obtenidos en esta operación en las dos especies pueden atribuirse a la densidad media de la madera de ambas especies que combinado con el hilo desviado
RESULTADOS Y DISCUSIÓN

contrarrestaron el posible efecto del hilo entrecruzado que pudo haber provocado una clasificación menor.

Considerando la evaluación de Zavala (1976) se observa que la mayoría de las probetas en ambas especies presentaron el grano apelusado en forma superficial pero con una mínima extensión, lo cual ocasionó que se diera una clasificación de las especies semejante a la Norma ASTM D 1666-64. Sin embargo, se presenta una diferencia en cuanto al número de probetas excelentes y buenas en el caso del *E. grandis* debido a que de acuerdo a la evaluación de Zavala (1976) la combinación de extensión y severidad del defecto disminuyó el porcentaje de probetas excelentes (Cuadro 10, Figura 18).

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>No. LIJA</th>
<th>% E</th>
<th>% B</th>
<th>% E + B</th>
<th>GRADO</th>
<th>CLASIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus grandis</td>
<td>100</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>1</td>
<td>EXCELENTE</td>
</tr>
<tr>
<td>Eucalyptus urophylla</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>1</td>
<td>EXCELENTE</td>
</tr>
</tbody>
</table>
Las variables utilizadas en las especies de referencia son similares a las de los eucaliptos en cuanto al grano de lija utilizada, tipo de lijadora y presión ejercida, excepto en el *Fraxinus uhdei* en donde no se menciona la presión ejercida. Se tienen diferencias en la velocidad de alimentación, ya que en las demás especies fue de 6.74 m/min y en las especies en estudio esta velocidad fue de 14.96 m/min y de 13.01 m/min en *E. grandis* y *E. urophylla*, respectivamente, resultado del menor tiempo de lijado. El contenido de humedad para cada especie fue de 10.5 % y 11.10 % en los pinos mientras que en el fresno fue de 11.2 % y en los eucaliptos fue de alrededor de 12 %.
7.3. BARRENADO.

De acuerdo a los resultados el *Eucalyptus grandis* en el ensayo de barrenado tiene un comportamiento que se clasifica como bueno, presentando como defecto más frecuente el grano astillado (Figura 19). Por otra parte el *Eucalyptus urophylla* se clasifica como excelente en este ensayo presentando como defecto más frecuente el grano apelusado (Cuadro 11, Figura 20).

Cuadro 11. Comportamiento de la madera al barrenado según la Norma ASTM.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>C. H. (%)</th>
<th>T. P.</th>
<th>% E + B</th>
<th>GRADO</th>
<th>CLASIFICACIÓN</th>
<th>D. M. F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus grandis</td>
<td>12.65</td>
<td>14.24</td>
<td>85</td>
<td>2</td>
<td>BUENA</td>
<td>G. AST.</td>
</tr>
<tr>
<td>Eucalyptus urophylla</td>
<td>12.49</td>
<td>14.34</td>
<td>91</td>
<td>1</td>
<td>EXCELENTE</td>
<td>G. APEL.</td>
</tr>
</tbody>
</table>

C. H.: Contenido de humedad.
T. P.: Tiempo de penetración (segundos).
% E + B: Porcentaje de piezas excelentes más buenas.
D. M. F.: Defecto más frecuente.
RESULTADOS Y DISCUSIÓN

La calidad del barrenado se mejora al hacer lento el primer contacto de la broca con la madera y después aumentar la velocidad de penetración disminuyéndolo al final de la operación. También Zavala (1976) menciona que la velocidad influye en forma determinante, ya que si es alta, la severidad del defecto aumenta. En esta operación se trató de realizar el barrenado con un tiempo de penetración aproximado de 15 segundos. Los resultados buenos y excelentes pueden atribuirse a la combinación de la velocidad de penetración utilizada y la densidad media presentada en las especies, buscando que la broca corte en lugar de rasgar y evitando también que la madera se queme como efecto de un mayor tiempo de barrenado.

RESULTADOS Y DISCUSIÓN

Tomando en cuenta la evaluación presentada por Zavala (1976) el *Eucalyptus grandis* se clasifica como regular en la operación de barrenado destacando que el 69 % de las probetas se ubicaron en el rango II. En cambio el *Eucalyptus urophylla* se clasifica como buena en el ensayo de barrenado con el 81 % de probetas con defectos en el rango II (Cuadro 12).

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>% E</th>
<th>% B</th>
<th>% E + B</th>
<th>GRADO</th>
<th>CLASIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus grandis</td>
<td>8</td>
<td>69</td>
<td>77</td>
<td>3</td>
<td>REGULAR</td>
</tr>
<tr>
<td>Eucalyptus urophylla</td>
<td>8</td>
<td>81</td>
<td>89</td>
<td>2</td>
<td>BUENA</td>
</tr>
</tbody>
</table>

La evaluación de la Norma ASTM D 1666-64 no coincide con la evaluación de Zavala (1976). Esto se debe principalmente a la extensión evaluada, ya que en este ensayo dicha extensión es muy pequeña por lo cual al clasificar las probetas de acuerdo al Cuadro 1 se presentaron defectos superficiales pero con extensiones que abarcaron toda la probeta ensayada por lo cual al combinar ambas clasificaciones el rango obtenido fue de II y III. El porcentaje de probetas excelentes más buenas fue menor que el obtenido de acuerdo con la Norma citada (Figura 21).
RESULTADOS Y DISCUSIÓN

Figura 21. Comparación entre especies en el barrenado.

Las variables utilizadas en las especies de referencia son similares a las de los eucaliptos estudiados. La velocidad de giro del cabezal fue de 1300 rpm en todas las especies. El tiempo de penetración en el caso de los pinos fue de 15 segundos y su CH de 9.5 % y 12 % en *P. arizonica* y *P. cooperi*, respectivamente. En el fresno no se especifica el tiempo de penetración y el CH utilizado fue de 11.2 %.

Se puede observar que el *E. grandis* se diferencia un poco de las demás especies con un 85 % de probetas excelentes más buenas. Esto podría deberse a la menor densidad presentada en esta especie, lo cual se refleja en una mayor presencia de defectos de grano astillado y grano rasgado (39 % y 36 %, respectivamente).
7.4. MOLDURADO.

De acuerdo a los resultados el *Eucalyptus grandis* se clasifica como regular ante el ensayo de moldurado, debido a la densidad media de la madera que combinada con la desviación del hilo provocó que el defecto de grano astillado se presentara en forma severa cuando se cambió la dirección del corte pasando de la forma perpendicular al grano a la forma paralela al mismo. El moldurado en sentido paralelo al hilo de la madera presentó una mínima cantidad de defectos aumentando la calidad del corte (Cuadro 13).

Cuadro 13. Comportamiento de la madera al moldurado según la Norma ASTM.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>C. H. (%)</th>
<th>T. M.</th>
<th>% E + B</th>
<th>GRADO</th>
<th>CLASIFICACIÓN</th>
<th>D. M. F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus grandis</td>
<td>12.65</td>
<td>6.37</td>
<td>66</td>
<td>3</td>
<td>REGULAR</td>
<td>G. AST.</td>
</tr>
<tr>
<td>Eucalyptus urophylla</td>
<td>12.49</td>
<td>6.07</td>
<td>94</td>
<td>1</td>
<td>EXCELENTE</td>
<td>G. APEL.</td>
</tr>
</tbody>
</table>

C. H.: Contenido de humedad.
T. M.: Tiempo de moldurado (segundos).
% E + B: Porcentaje de piezas excelentes más buenas.
D. M. F.: Defecto más frecuente.

RESULTADOS Y DISCUSIÓN

El *Eucalyptus urophylla* resultó excelente ante la operación de moldurado y presentó como defecto más frecuente el grano apelusado (Figura 22). Esta diferencia de clasificación respecto al *E. grandis* es porque la especie *Eucalyptus urophylla* presenta una densidad mayor, con lo cual se reafirma lo expresado por Zavala (1976) al manifestar que las maderas más densas presentan mejores características de moldurado.

Figura 22. Grano apelusado en el moldurado.

De acuerdo a la evaluación utilizada por Zavala (1976) ambas especies se clasifican como excelentes al moldurado. Sin embargo, se puede observar la diferencia en las evaluaciones. Esto radica en que las probetas presentaron una mayor severidad de defectos pero con una mínima extensión no abarcando más de 1/5 de la probeta, por lo cual al combinar estas dos variables el
RESULTADOS Y DISCUSIÓN

El rango obtenido fue de II de acuerdo a Zavala (1976) para aquellas probetas que evaluadas conforme a la Norma no fueron consideradas como excelentes o buenas (Cuadro 14).

En el caso del *E. grandis* la diferencia de clasificación es más notable, ya que al utilizar la evaluación de la Norma mencionada, la suma de porcentajes de probetas excelentes más buenas fue de 66 %, mientras que con la evaluación de Zavala (1976) la misma suma se incrementa (93%) al considerar la extensión de los defectos (Figura 23).

![Figura 23. Comparación entre especies en el moldurado.](image)

Cuadro 14. Comportamiento de la madera al moldurado considerando a la extensión y severidad de los defectos según metodología de Zavala (1976).

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>C. H. (%)</th>
<th>% E</th>
<th>% B</th>
<th>% E + B</th>
<th>GRADO</th>
<th>CLASIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus grandis</td>
<td>12.65</td>
<td>3</td>
<td>90</td>
<td>93</td>
<td>1</td>
<td>EXCELENTE</td>
</tr>
<tr>
<td>Eucalyptus urophylla</td>
<td>12.49</td>
<td>6</td>
<td>94</td>
<td>100</td>
<td>1</td>
<td>EXCELENTE</td>
</tr>
</tbody>
</table>
RESULTADOS Y DISCUSIÓN

En todas las especies presentadas en la Figura 23 se usó la misma velocidad de giro del cabezal portafresas de 8000 rpm. El contenido de humedad del *P. arizonica* fue de 9.5 % y del *P. cooperi* de 11.85 %, mientras que en el fresno se usó el contenido de humedad de 11%.

Como se puede observar el *E. urophylla* resultó mejor al moldurado que las demás especies (excepto con el fresno). Sin embargo, el *E. grandis* se comporta mejor en este ensayo que los pinos, con las mismas variables, aunque la clasificación es regular.

7.5. TORNEADO.

Para el *Eucalyptus grandis* los resultados obtenidos muestran que a un contenido de humedad de 14.24 % presenta una calidad buena ante el tornearado, con el defecto más frecuente de grano apelusado en un 56 % de las probetas, pero en forma superficial que puede eliminarse con una lija fina del número 100, lo cual provocó que se diera esta clasificación. Por otro lado, para el contenido de humedad de 10.05 % la madera de esta especie presenta una calidad regular ante el ensayo de tornearado, presentándose el defecto de grano astillado como más frecuente en un 88 % de las probetas. Esta diferencia de clasificación se puede explicar porque las fibras de la madera cuando están más secas son más rígidas y por consiguiente ofrecen una mayor resistencia al corte de la cuchilla, lo cual provoca que el defecto de grano astillado se presente con mayor frecuencia y mayor severidad ocasionando incluso hasta la ruptura de la probeta, lo cual a su vez provoca una clasificación menor (Cuadro 15).
RESULTADOS Y DISCUSIÓN

Cuadro 15. Comportamiento de la madera al torneado según la Norma ASTM.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>C. H. (%)</th>
<th>T. T. (Seg.)</th>
<th>% E + B +R</th>
<th>GRADO</th>
<th>CLASIFICACIÓN</th>
<th>D. M. F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus grandis</td>
<td>14.24</td>
<td>10.47</td>
<td>88</td>
<td>2</td>
<td>BUENA</td>
<td>G. APEL.</td>
</tr>
<tr>
<td></td>
<td>10.05</td>
<td>10.83</td>
<td>66</td>
<td>3</td>
<td>REGULAR</td>
<td>G. AST.</td>
</tr>
<tr>
<td>Eucalyptus urophylla</td>
<td>13.85</td>
<td>10.74</td>
<td>92</td>
<td>1</td>
<td>EXCELENTE</td>
<td>G. APEL.</td>
</tr>
<tr>
<td></td>
<td>10.63</td>
<td>10.80</td>
<td>74</td>
<td>3</td>
<td>REGULAR</td>
<td>G. AST.</td>
</tr>
</tbody>
</table>

T. T.: Tiempo de torneado.
% E + B + R: Porcentaje de piezas excelentes más buenas más regulares.
CLASIF.: Clasificación.
D. M. F.: Defecto más frecuente.
G. APELUSADO: Grano apelusado.
G. ASTILLADO: Grano astillado.

En la especie *Eucalyptus urophylla* se obtuvo una calidad excelente con un contenido de humedad de 13.85 %, presentándose como defecto más frecuente el grano apelusado en un 72 % de las probetas pero en forma superficial, de tal manera que puede eliminarse con una lija fina del número 100. Para el contenido de humedad de 10.63 % se obtuvo una clasificación regular ante esta operación de maquinado, siendo el defecto más frecuente el grano astillado (71 %) en forma severa. Esto podría deberse a la desviación del hilo de la especie combinado con su densidad media.

Los resultados coinciden con los expuestos por Cruz (1994) en *P. cooperi*, con Tamarit (1994) en *P. arizonica* y por lo mencionado por Zavala (1976) el cual indica que con un mayor contenido de humedad se tienen mejores calidades de torneado. Sin embargo, se tienen diferencias con
RESULTADOS Y DISCUSIÓN

Martínez y Moreno (1984), quienes obtuvieron los mejores resultados al usar contenidos de humedad menores.

Las probetas también se.inspectaron visualmente de acuerdo a la metodología usada por Zavala (1976) y se clasificaron en un rango de I a V según la combinación resultante entre la extensión y la severidad de los defectos presentados. Considerando esta evaluación y clasificando de acuerdo al Cuadro 4 se obtuvieron los siguientes resultados (Cuadro 16).

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>CH (%)</th>
<th>% EXCELENTES</th>
<th>% BUENAS</th>
<th>% E + B</th>
<th>GRADO</th>
<th>CLASIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus grandis</td>
<td>14.24</td>
<td>46</td>
<td>38</td>
<td>84</td>
<td>2</td>
<td>BUENA</td>
</tr>
<tr>
<td></td>
<td>10.05</td>
<td>16</td>
<td>32</td>
<td>48</td>
<td>4</td>
<td>POBRE</td>
</tr>
<tr>
<td>Eucalyptus urophylla</td>
<td>13.85</td>
<td>54</td>
<td>30</td>
<td>84</td>
<td>2</td>
<td>BUENA</td>
</tr>
<tr>
<td></td>
<td>10.63</td>
<td>14</td>
<td>36</td>
<td>50</td>
<td>4</td>
<td>POBRE</td>
</tr>
</tbody>
</table>

Como en la evaluación de Zavala (1976) no se toma en cuenta la suma de porcentajes de probetas regulares, los resultados presentados en el Cuadro 16 tienen una clasificación menor que la evaluada por medio de la Norma ASTM D 1666-64.

En el caso de la madera de Eucalyptus grandis para el contenido de humedad de 14.24 % se presentaron 6 probetas (12 %) con defectos severos; 21 probetas (42 %) con defectos ligeros y 23 probetas (46 %) sin defectos, de acuerdo al agrupamiento utilizado por Zavala (1976). Para el contenido de humedad de 10.05 % se obtuvieron 17 probetas (34 %) con defectos severos; 25 probetas (50 %) con defectos ligeros y sólo 8 probetas (16 %) sin defectos. Aquí se puede
RESULTADOS Y DISCUSIÓN

observar la diferencia presentada en los dos contenidos de humedad probados, ya que con un
contenido de humedad menor las probetas con defectos severos se incrementaron hasta casi tres
veces más, y de igual forma las probetas sin defectos disminuyeron en gran medida.

Para el caso de la madera de *Eucalyptus urophylla* con el contenido de humedad de 13.85 % se
obtuvieron 4 probetas (8 %) con defectos severos, 19 probetas (38 %) con defectos ligeros y 27
probetas (54 %) sin defectos. En cambio con el contenido de humedad de 10.63 %, 13 probetas
(26 %) resultaron con defectos severos, 30 probetas (60 %) con defectos ligeros y sólo 7 probetas
(14 %) sin defectos. También se demuestra que a un menor contenido de humedad los defectos
severos se incrementan debido principalmente a que la madera ofrece mayor resistencia a la
penetración de la cuchilla por lo cual el grano astillado se presenta como defecto más severo
provocando una menor clasificación.

Los defectos más frecuentes para ambas especies fueron el grano apelusado para el contenido de
humedad mayor y el grano astillado para el contenido de humedad menor (Figuras 24 y 25). Sin
embargo, el defecto de grano astillado fue el que tuvo mayor influencia para la clasificación, ya
que su presencia fue más severa. Lo anterior podría suponerse que se debió a las características
anatómicas de la madera de las dos especies, pues se observó una gran cantidad de probetas con
desviación del hilo, aunado a la densidad básica media que presentan.
Al realizar la comparación con otras especies los resultados obtenidos en los eucaliptos son similares e incluso mejores que los obtenidos en las especies de pino con las variables semejantes. Los resultados presentados en la especie de *E. urophylla* coinciden con los evaluados en el fresno con un contenido de humedad de 11 % (Figura 26).
En todas las especies de la Figura 26 la velocidad de giro del cabezal fue de 3200 rpm. El contenido de humedad en el *P. arizonica* fue de 14 % y 10 %, y el tiempo de torneado de 34 segundos. En el *P. cooperi* no se menciona el tiempo de torneado pero el contenido de humedad utilizado fue de 14 % y 10 %. En el fresno el contenido de humedad fue de 11 % y tampoco se menciona el tiempo de torneado.
8. CONCLUSIONES

1. Los resultados obtenidos en los ensayos son a manera de índices excepto en el torneado, ya que en los demás ensayos no se ajustó el número de probetas a lo especificado por la Norma ASTM D 1666-64.

2. De acuerdo al sistema de evaluación de la Norma ASTM D 1666-64 se concluye que:

- El mejor comportamiento ante el ensayo de cepillado de la madera de *Eucalyptus grandis* y *Eucalyptus urophylla* se obtuvo al utilizar el ángulo de corte de 30 ° y una velocidad de alimentación de 7.5 m/min.

- La madera de *E. grandis* se clasifica como excelente en el lijado, buena en el cepillado, barrenado y torneado y regular en el moldurado.

- La madera de *E. urophylla* se clasifica como excelente en los ensayos de cepillado, lijado, barrenado, moldurado y torneado.

3. De acuerdo al sistema de evaluación utilizado por Zavala (1976) se concluye que:

- El mejor comportamiento ante el ensayo de cepillado de la madera de *Eucalyptus grandis* y *Eucalyptus urophylla* se obtuvo al utilizar el ángulo de corte de 30 ° y una velocidad de alimentación de 7.5 m/min.
• La madera de *E. grandis* se clasifica como excelente en el lijado y moldurado, buena en el cepillado y torneado y regular en el barrenado.

• La madera de *E. urophylla* se clasifica como excelente en los ensayos de cepillado, lijado y moldurado y buena en el barrenado y torneado.

4. Los mejores resultados en el torneado se obtuvieron cuando la madera presentó un contenido de humedad de 14.2 % y 13.8 %, en comparación con el contenido de humedad de 10.0 % y 10.6 % para *E. grandis* y *E. urophylla*, respectivamente.

5. Al relacionar las especies de *E. grandis* y *E. urophylla* con las especies *Pinus arizonica*, *P. cooperi* y *Fraxinus uhdei* se notó que los resultados son similares e incluso mejores en los ensayos, excepto en el barrenado para ambas especies.
9. RECOMENDACIONES

1. Al cepillar la madera de *Eucalyptus grandis* y *Eucalyptus urophylla* de esta plantación se recomienda utilizar el ángulo de corte de 30° y la velocidad de alimentación de 7.5 m/min.

2. En base a los resultados de maquinado, la madera de las dos especies estudiadas se pueden recomendar para usarse en la elaboración de muebles y para ebanistería en general.
10. LITERATURA CITADA

11. ANEXOS

1. Defectos considerados en los procesos de maquinado.

Grano astillado.- Es la condición de aspereza que presenta la superficie de la madera cuando las fibras o traqueidas se desprenden de la superficie maquinada dejando pequeñas huellas en forma de agujeros.

Grano apelusado.- Es la condición de aspereza de la superficie de la madera en la que pequeñas partículas o grupos de fibras o traqueidas que no fueron cortadas por la herramienta de corte (cuchilla, fresa, broca, etc.) sobresalen de la superficie general de la tabla sin desprenderse, permaneciendo adheridas a ésta.

Grano levantado.- Es la condición de aspereza de la superficie de la madera en la cual una parte del anillo de crecimiento u otra sección de madera se levanta sobre la superficie general de la pieza trabajada, debido a la diferencia de densidad entre madera tardía y madera temprana.

Marcas de astilla.- Son huellas (abolladuras) poco profundas en la superficie de la tabla, causadas por virutas que permanecen adheridas al cabezal portacuchillas del cepillo, ya que no son eliminadas por el escape de este. Este defecto es exclusivo del ensayo de cepillado.
Grano rasgado.- Es la condición de aspereza que presenta la superficie trabajada de una pieza de madera, ocasionada por la herramienta y sentido del corte, en donde las fibras o traqueidas son cortadas transversalmente. Este defecto se presenta en los ensayos de moldurado, torneado y barrenado.

Grano comprimido.- Son grupos de fibras o traqueidas aplastadas por efecto de la fricción de la broca. Este defecto es exclusivo del ensayo de taladrado.

Rayones.- Son marcas semejantes a un rasguño, ocasionadas por la lija, por lo que este defecto se presenta exclusivamente en el ensayo de lijado.
2. Formato para la evaluación de las probetas (Norma ASTM D 1666-64).

<table>
<thead>
<tr>
<th>NÚMERO DE PROBETA</th>
<th>CLASE O GRADO</th>
<th>DEFECTO MÁS FRECUENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>